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Spatial Compression of Seasat SAR Imagery 

Abstmct-This paper summarizes the results of a study into tech- 
niques for spatial compression of SAR imagery. The requirements for 
an algorithm to perform image compression have been established by 
the NASA ground processing systems supporting the Shuttle Imaging 
Radar (SIR-C Processor) and the European Remote Sensor (ERS-1 
Alaska SAR Facility). The objective is to reduce the volume of the im- 
age data for archive and on-line storage applications while preserving 
the image resolution and radiometric fidelity. A quantitative analysis 
of various techniques, including vector quantization (VQ) and adaptive 
discrete cosine transform (ADCT), is presented. Various factors such 
as compression ratio, algorithm complexity, and image quality are con- 
sidered in determining the optimal algorithm. The paper establishes 
the compression system requirements for electronic access of an on- 
line archive system based on the results of a survey of the science com- 
munity. The various algorithms are presented and their results eval- 
uated considering the effects of speckle noise and the wide dynamic 
range inherent in SAR imagery. The conclusion is that although the 
ADCT produces the best signal-to-distortion noise ratio (SDR) for a 
given compression ratio, the two-level tree-searched VQ technique is 
preferred due to the simplicity of the decoding and the near optimal 
performance. 

I. INTRODUCTION 
HE SUCCESS of the Seasat-A SAR and the Shuttle T Imaging Radar (SIR-A and SIR-B) missions has stim- 

ulated considerable interest in spaceborne synthetic ap- 
erture radar (SAR) as a remote-sensing tool [I], [2]. As a 
result, a number of national space agencies, in addition 
to NASA, are planning SAR missions in the early 1990’s 
[3]. However, the large volume of data collection planned 
for future spaceborne SAR missions, such as: the NASA 
Shuttle Imaging Radar (SIR-C) and Earth Observing Sys- 
tem (EOS SAR), the ESA European Remote Sensor 
(E-ERS- 1), the NASDA Japanese Earth Resources Sat- 
ellite (J-ERS-I), and the Canadian Radarsat poses a se- 
vere problem for existing data handling, archiving, and 
distribution systems. Efficient coding of image data to re- 
duce the data volume would significantly decrease both 
the transmission and archive costs [4]. 

The primary requirement on the SAR image compres- 
sion system is to provide remote users with a large readily 
accessible data base. The system should provide good re- 
constructed image quality, short transfer delay, low trans- 
fer cost, and minimal decoding complexity. For both the 
SIR-C and the Alaska SAR Facility (ASF) ground pro- 
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cessing systems, an on-line image archive for browse and 
data distribution is planned. These systems will respond 
to user requests for electronic transfer of low-resolution 
(8 by 8 pixel averaged) browse image files to the remote 
scientists through NASA data networks (e.g., the Space 
Physics Analysis Network (SPAN)). 

The application of data reduction for the primary (off- 
line) archive will not be specifically addressed in this pa- 
per except to state that although the image degradation 
specification will be much more strict, the inherent 
speckly noise in the imagery may allow a fairly high 
compression. The issue of loss of the phase information 
in the reconstructed imagery has not yet been addressed 
and will be the subject of a further study. The primary 
emphasis of this study is for compression of on-line im- 
agery for browse of survey applications. 

As an example of an operational SAR ground data sys- 
tem, Fig. 1 shows the functional block diagram of the 
Alaska SAR Facility (ASF). The ASF SAR processor sys- 
tem is custom hardware designed to process the E-ERS- 
1, J-ERS-1, and Radarsat data. The daily production of 
the ASF SAR processor will be on the order of 150 im- 
ages/day over a period of three to five years. The stan- 
dard image product of the ASF processor is a high-reso- 
lution (4-look) image of approximately 8192 by 8192 
pixels (64 Mbytes ). In order to reduce the data volume 
to be stored in the on-line disk storage, a reduced reso- 
lution product is generated by spatially averaging (8 by 8 
pixels) the 4-look image data. This image product is 
known as low-resolution browse imagery (which is ap- 
proximately 75 looks). It consists of a 1024 by 1024 pixel 
image frame ( 1  Mbyte/frame), which covers approxi- 
mately 100 km by 100 km at a pixel spacing of 100 m. 
Even though the data volume is reduced by a factor of 64 
times, it is estimated that the data volume of the browse 
images will be about 55 Gbytes per year, which results in 
extremely high on-line storage and data handling costs. 

The key function of an on-line data system is for the 
users to have the capability of browsing the imagery rou- 
tinely produced. Upon user’s requests, images would be 
electronically transferred to members of the remote sci- 
ence working team. At a typical data rate of 9.6 Kbps 
(e.g., SPAN), a 1-Mbyte browse image would require 15 
min for transfer without data compression. Since there is 
a single archive system shared by many remote users, the 
actual response time could be considerably longer de- 
pending on the loading of the archive system and data 
network (see Table I).  
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Fig. 1 .  The functional block diagram of the Alaska SAR Facility (ASF) Ground Processing System. 

TABLE I 
THE AVERAGE RESPONSE TIME FOR A: UNCOMPRESSED DATA: B: 

COMPRESSED DATA WITH ENCODING TIME, T, = 1 min; C: COMPRESSED 
DATA WITHOUT ENCODING TIME, T, = 0 min (COMPRESSED OFF-LINE); D: 
UNCOMPRESSED DATA WITH FIVE SERIAL PORTS AS A FUNCTION OF ACCESS 

FREQUENCY 1 (IMAGES/HOUR) AND COMPRESSION RATIO R 
T \RI] 1 1  5 1 10 j 15 j 20 1 30 , 

The SIR-C processor throughput is similar to the ASF 
(approximately 50 images/day for 2.5 years) and will re- 
quire an on-line archive. The most obvious solution to 
save on-line disk storage and minimize the transfer delay 
time is data compression to reduce the data volume with- 
out further loss in spatial resolution. 

A user survey was conducted to assist in specifying the 
system requirements of SAR image data compression. 
This survey, along with sample image products, was dis- 
tributed to members of the science community. The ques- 
tionnaire requested both quantitative and qualitative eval- 
uations regarding the trade-offs among image quality, 
compression ratio, estimated transfer delay and transfer 
cost. Users’ response to the survey indicated that a trans- 
fer delay of less than 5 min/image would be satisfactory. 
It was estimated that for 50 investigators, the peak access 
frequency to the on-line archive will be on the order of 
10 to 15 images/h. The high access frequency and re- 
quired quick response time over a 9.6-Kbps data line ne- 
cessitates a compression ratio of at least 10 : 1. Among the 
sample image products distributed, the reconstructed im- 

age quality with compression ratio between 10: 1 and 
20 : 1 was verified as satisfactory for the browse applica- 
tion. 

Various image data compression algorithms have been 
evaluated using standard Seasat [5] 4-1ook SAR images 
(for the primary archive) and 8 by 8 pixel averaged browse 
images. These images were processed by the NASA/JPL 
digital SAR processor system [6]. The data compression 
algorithms evaluated include the predictive coding [7], 
adaptive transform coding [8], [9], vector quantization 
[lo], [ 1 13, and various other ad hoc techniques [ 121-[ 141. 
Among these algorithms, the transform coding and the 
vector quantization techniques are the two algorithms that 
best provide good image quality at high compression ra- 
tios. These two algorithms have been compared based on 
several factors, including the compression ratio, recon- 
structed image quality, performance controllabil- 
ity, the compression ratio flexibility, and computational 
complexity. Since small decoding complexity at the users’ 
site is critical for wide distribution of the on-line archive 
data, the tree-searched vector quantization, which re- 
quires minimal decoding complexity, appears to outweigh 
the high compression ratios achievable with the adaptive 
transform coding. Thus, the tree-searched vector quanti- 
zation is recommended as the image data compression al- 
gorithm for the on-line data archive system. 

Section I1 will present a quantitative analysis regarding 
the compression ratio, algorithm complexity, transfer de- 
lay, and access frequency. The requirements of the on- 
line data archive system are also specified. Section I11 de- 
scribes the effect of the SAR unique image data charac- 
teristics, namely the speckle noise and the large dynamic 
range, on data compression results. Section IV discusses 
the adaptive transform coding and vector quantization al- 
gorithms. Section V presents the tests results and com- 
parison study and Section VI makes final recommenda- 
tions. 
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11. REQUIREMENTS AND LIMITATIONS OF THE ON-LINE 
DATA ARCHIVE SYSTEM 

This section will evaluate the quantitative relationship 
among compression ratio, algorithm complexity (based on 
the encoding and decoding time), transfer delay, and ac- 
cess frequency by modeling the data distribution system 
as a queueing system [18]. The analysis results will be 
utilized to specify the requirements on data compression 
for the on-line data archive system. 

A. Queueing Analysis of the On-Line Archive System 
For simplicity of analysis, we assume that access to the 

archive system can be modeled by a Poisson process. It 
is also assumed that each access requires transfer of one 
image data file and that only one serial port is shared by 
all remote users. The archive system can then be modeled 
as a M I D /  1 queueing system [ 181, where M assumes the 
access is Poisson distributed, D assumes a fixed amount 
of time to encode and transmit a given size image, and 1 
assumes a single resource (encoder and serial port) shared 
by all the users. 

The following notations are used: A: the mean value of 
the Poisson process in number of images per unit time; L1 
X L,: the uncompressed image size in pixels; K: number 
of bits to represent the radiometric resolution of each un- 
compressed pixel; R: the compression ratio; W: the av- 
erage waiting time to access the archive system; T,: the 
time to encode the image; T,: the time to transmit the 
compressed image through the data line; C: the data rate 
in bits/second; Td: the time to decode the image; T: the 
average total response time. Both T, and Td depend upon 
the image size and the algorithm complexity. It can be 
shown that T ,  the average response time in the long run, 
can be expressed as [18] 

T =  W + T, + T, + Td (1)  

where the average waiting time W to get hold of the re- 
source can be shown to be 

T, + Tt is known as the service time of the queueing sys- 
tem. Let T, be the time to transmit the uncompressed data 
through the data line, then 

Hence 

Also let 

P = A(Te + T,) ( 5 )  
where p is known as the utilization factor of the queueing 

615 

system. Equation (1) can then be rewritten as 

Note that if all the image data files are compressed as 
part of the image formation process, there is no encoding 
time required following each data request; that is, T, = 
0. This mode of operation is important since it presents a 
means of significantly reducing the amount of storage 
needed for the browse images, as well as lowering the 
computer loading of the archive system and the overall 
response time of delivering an image to the remote user. 
Since all encoding is performed at the central site, it is a 
reasonable expense to implement the algorithm in hard- 
ware. 

The above queueing model assumes that there is only 
one serial port shared by all the remote users. In order for 
the data compression to be practically useful, it must out- 
perform the multi-serial-port system, where many serial 
ports are shared by the remote users to transfer the un- 
compressed image data files. From the queueing theory it 
can be shown that the average response time of this multi- 
serial-port system has a lower bound of 

(7) 

where R is now an integer representing the number of se- 
rial ports. Consider an image data compression capability 
of ratio R .  Also assume that the image data files are com- 
pressed off-line and stored in the data archive so that no 
encoding time would be required for each data transfer. 
We have 

From (7) and (8), we can see that the image data 
compression will outperform the multi-serial-port system 
i f  1) The image data is compressed off-line; 2) the de- 
coding time is much shorter than the transmission time of 
uncompressed data; 3) the overhead data is small in vol- 
ume relative to the uncompressed image data; and 4) the 
decoding complexity at the remote sites is within the prac- 
tical constraints of most computing systems. 

An additional benefit of the image data compression not 
offered by a multi-serial-port system is that the image data 
compression can provide a large inexpensive on-line data 
base by reducing the data volume. For instance, without 
data compression the archive system would annually re- 
quire 55 Gbytes of disk storage for the ASF ground pro- 
cessing system, which is a significant cost to maintain an 
on-line archive system. With a compression ratio of 15 : 1 ,  
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less than 4 Gbytes of storage is required to archive the 
data produced in a year. The transfer cost, which is a 
function of the transmit time T,, is also reduced by the 
same amount due to the reduced data volume. 

As an example of the performance of image data 
compression, consider the following: Given an image size 
of 1024 X 1024 pixels ( 1  Mbyte) and a data rate of 9.6 
Kbps. Table I shows the average response time T, in min- 
utes, as a function of the average access frequency A, in 
images/h, and the compression ratio R.  The lower bound 
of the average response time of the multi-serial-port sys- 
tem is also shown for R = 5 .  The cases with encoding 
time and without encoding time are also shown. It is as- 
sumed that T, = 1 min and Td = 0.5 min. Notice that if 
the image is not compressed ( R  = 1 )  and the average 
access is one image per 15 min ( A  = 4) ,  which is con- 
sidered to be lower than a typical access frequency, the 
average response time will eventually exceed 1000 min! 
This is because the access frequency is very close to the 
limit that can be handled by the uncompressed data dis- 
tribution system. Alternatively, with a compression ratio 
of 15: 1, the average response time reduces to only 2.57 
min including the encoding time and 1.50 min not in- 
cluding the encoding time. We can also see that the multi- 
serial-port system can only prevent the response time from 
quickly growing out of bound. It cannot reduce the trans- 
fer delay of each image below 14.56 min, which is the 
time required to transmit the 1-Mbyte image through the 
9.6-Kbps data line. This example clearly demonstrates the 
benefits of data compression for a successful on-line ar- 
chive and data distribution system. 

B. User Survey Results 
A survey of the SAR user community selected primarily 

from the SIR-B science team was conducted to assist in 
specifying the requirements of SAR image data compres- 
sion for the on-line data archive system. The user survey 
included sample compressed and reconstructed image 
products. The questionnaire requested quantitative and 
qualitative evaluation of these images regarding the trade- 
offs among image quality, compression ratio, estimated 
transfer delay and transfer cost. 

Based on the user response, the peak access frequency 
of all the users is estimated to be between 10 and 15 im- 
ages/h. The users’ requirements for the transfer delay 
were quite varied. Approximately half considered the de- 
lay a noncritical issue. However, the other half consid- 
ered a small transfer delay necessary for their research 
studies. To compromise these different requirements, a 
transfer delay of less than 5 min/image is expected to 
meet most users’ requirements. The users stated that the 
transfer cost should be less than 1 dollar/image. Most of 
the users also recommended that the compressed images 
be stored in the archive to reduce the amount of disk stor- 
age and computer time. Most of the users see no appli- 
cation of imagery with compression ratios higher than 
50: 1 (see Figs. 9 and 10 later). 

Among the sample image products, the image quality 

of compression ratio 10: 1 has been deemed satisfactory 
by all users and considered to be acceptable for quick- 
look applications. Some of the users stated that the image 
quality degradation between compression ratios 10 : 1 and 
30 : 1 appears acceptable. Based upon the users’ require- 
ments on access frequency, transfer delay, and image 
quality, we conclude the compression ratio should be at 
least 10 : 1. 

C. Summary of Requirements on Data Compression for 
the On-Line Data Archive System 

The requirements on the data compression for on-line 
data archive and distribution system are compiled as fol- 
lows: 1) The daily production of the ground processing 
system can be as high as 150 browse images/day; 2) each 
browse image contains 1024 by 1024 pixels ( 100 km by 
100 km ground coverage); 3) the data archive will be 
shared by over 25 to 50 remote scientists; 4) the data rate 
of the data network is 9.6 Kbps; 5 )  the encoding compu- 
tational capability will require a hardware implementation 
or a multiple vector processor approach; 6) the decoding 
computational capability is assumed at least a small work- 
station; 7) the peak access frequency to the data archive 
is between 10 and 15 images/h; 8) the total image transfer 
delay time is limited to 5 min/image; 9) the image quality 
should meet the users’ requirement for browsing; and 10) 
the compression ratio should be at least 10 : 1. 

111. EFFECTS OF SAR IMAGE DATA CHARACTERISTICS 
ON DATA COMPRESSION 

In order to attain good data compression results for SAR 
imagery, the SAR image data characteristics must be con- 
sidered [15]. In this section, effects of two SAR image 
data characteristics, the speckle noise [ 161, [ 171, and the 
wide dynamic range [ 11, [2], [5] ,  on data compression are 
addressed. 

A. Observation of Speckle Noise Effects on Data 
Compression 

The speckle noise contamination of SAR imagery is an 
important data characteristic that needs to be considered 
in selecting a SAR image data compression algorithm. 
Speckle is a phenomenon in which the radar returns from 
the individual scatterers in a ground resolution cell com- 
bine coherently to give the resultant observed return. 
Speckle is a multiplicative noise in which the amplitude 
of the echo return is exponentially distributed and the 
phase is uniformly distributed. The existence of speckle 
makes it difficult to calibrate the radiometric characteris- 
tics of an individual SAR resolution element in terms of 
backscatter ratio. Speckle is reduced by a technique 
known as multiple-look averaging [17] where the data is 
processed in azimuth over several independent segments 
of the Doppler bandwidth and the resultant images are 
incoherently summed to give the final SAR image. Al- 
though the radiometric resolution is improved, the spatial 
resolution is degraded. 

As a result of the speckle noise, there is lack of inter- 
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pixel Correlation among the adjacent resolution cells in 
the SAR images as compared to the optical images. 
Hence, the image data compression techniques that are 
primarily based on inter-pixel correlation (i.e., the pre- 
dictive coding) do not perform as effectively for the SAR 
images, especially for the images having small look num- 
ber. 

An example of the inter-pixel correlation function for 
the 4-look image and 8 by 8 pixel average browse image 
is shown in Fig. 2. The inter-pixel correlation decreases 
quickly for the 4-look image and slowly for the browse 
image. For instance, the correlation coefficients of the 
browse image at 8 and 16 pixel shift are 0.446 and 0.282, 
respectively. The coefficients of the 4-look image reduce 
to 0.180 and 0.079, respectively. This shows that in terms 
of signal to distortion ratio, the image data compression 
techniques should perform better for the low-resolution 
images (large look number, low speckle noise) than the 
high-resolution images (small look number, high speckle 
noise) since the low-resolution images contain more inter- 
pixel correlation due to its smaller speckle noise. 

However, subjectively the degradation in the visual 
quality for the high-resolution imagery is less noticeable 
than for the low-resolution images due to the speckle 
noise. This can be explained as follows: let n, represent 
the speckle noise power and nd the distortion noise power 
induced by the data compression. The degradation in the 
image quality in terms of decibels is 

dB . (9) 
-k IZd degradation = 10 log ____ 
ns 

It is generally true that as the number of looks in- 
creases, the speckle noise n, reduces by the square root of 
the number of looks while the distortion noise nd reduces 
much more slowly. The result is that the degradation in 
visual quality at the same compression ratio is subjec- 
tively less noticeable for high-resolution images. 

Spatial averaging of pixels is often used as a technique 
to reduce the speckle noise in addition to the data volume. 
The drawback of this approach is significant degradation 
in spatial resolution. For the data compression to be prac- 
tically useful, it must have much smaller degradation in 
spatial resolution as compared to the spatial average 
method. The averaging resulting from the data compres- 
sion/reconstruction procedure outlined in the following 
sections will produce a better speckle reduction per loss 
in resolution factor than the spatial average method with 
far greater reduction in data volume. 

B. Eflects of Large Dynamic Range on Data 
Compression 

The dynamic range of SAR images is much greater than 
that of optical images. This results from the fact that a 
pixel in a Seasat SAR image is the result of pulse 
compression of approximately 1024 samples by 4096 
samples, where each input sample is represented by 5 bits 
(32 gray levels). For an ideal point target, the processing 
can produce a gain of as much as 132 dB. Although most 

Fig. 2. The interpixel correlation r as a function of pixel shift n. (a): Ex- 
ample of a 4-look SAR image. (b): Example of a 8 by 8 spatial average 
browse image. 

of these point-like scatterers characteristically exhibit a 
much smaller compression gain, the increase in the dy- 
namic range places special requirements on the data 
compression algorithm. 

The large dynamic range requires that the algorithm 
should be adaptive to the local image statistics. The over- 
head information of each algorithm used to characterize 
the source data statistics should be updated according to 
different local image statistics. This phenomenon is clearly 
demonstrated during the evaluation of adaptive transform 
coding and vector quantization techniques. For the adap- 
tive transform coding, a blurry or blocky effect will occur 
at relatively small compression ratios if the block adap- 
tivity is not properly chosen. Similarly, for the vector 
quantization, the edge degradation is very severe if no 
adaptation is allowed for different scene characteristics. 

IV. IMAGE DATA COMPRESSION ALGORITHMS 
In general, the image data compression algorithms can 

be classified into several categories, including predictive 
coding, transform coding, vector quantization, and other 
ad hoc techniques [4]. Several of these techniques were 
implemented and tested using Seasat 4-look and 8 by 8 
pixel average browse images [19]. This section presents 
two of the image data compression algorithms: adaptive 
transform coding and vector quantization. In the next sec- 
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ORIGINAL - 
tion, test results and comparison study will be discussed. 
The test results of the other algorithms were significantly 
inferior to the ADCT and VQ. These results are summa- 
rized in [ 191. 

A. Adaptive Transform Coding Algorithm 
The adaptive transform coding [8], [9] is a technique 

that can compress the image data to any user specified 
volume given that the associated image quality degrada- 
tion is tolerable. It generally yields better image quality 
than the predictive coding at the same compression ratio. 
Its major disadvantage is that it is computationally inten- 
sive in both encoding and decoding, requiring a large 
number of two-dimensional transforms. 

The adaptive transform coding technique partitions the 
image data into small blocks (16 pixels by 16 pixels per 
block is typical). The image blocks are then transformed 
block by block by employing two-dimensional energy 
packing transformation, such as Fourier transform, dis- 
crete cosine transform, Hadamard transform, etc. Follow- 
ing the transformation, each transform block is classified 
into one of several classes (four classes are typical) on the 
basis of a block activity parameter (e.g., the ac energy of 
each block). The activity of each transform coefficient 
within a class is computed to form a bit allocation map 
for the class, such that more bits are assigned to those 
areas of high activity and less bits to those of low activity. 
Based upon this information (i.e., class map and bit al- 
location maps), the transform coefficients are then nor- 
malized, quantized, and coded. Enhanced performance is 
achieved by optimizing block size, number of classes, 
type of quantizer, bit assignment procedure, and the pa- 
rameter used to characterize the block activity. The func- 
tional block diagram of the adaptive transform coding 
technique is shown in Fig. 3, where the discrete cosine 
transform is employed. The details of the algorithm are 
shown in [9]. This algorithm is commonly known as the 
adaptive discrete cosine transform (ADCT). A different 
compression ratio is easily achieved by adjusting a dis- 
tortion factor in the algorithm. Ideally any positive real 
number can be achieved. 

Let the image size be L1 by L2 pixels and the block 
size be s1 by s2 pixels. Hence, there are n1 ( = Ll /s l )  by 
n2( = L 2 / s 2 )  image blocks. Let the original pixel inten- 
sity be represented by K bits. Assume that after the trans- 
formation, the image blocks are divided into N classes. 
Let 1 denote thejkth entry of the ith bit allocation map. 
Then the compression ratio is 

DISCRETE COSINE TRANSFORM NORMALIZATION QUANTIZATION CODE 

( 10) 

+ [ n1n2 log N N s p 2  log K + 
LIL2 LIL2 

The first term in the denominator represents the average 
number of bits used to code the transform coefficients. 

11 CHANNEL 

RECONSTRUCTED INVERSE DISCRETE INVERSE INVERSE 
IMAGE COSINE TRANSFORM NORMALIZATION QUANTIZATION “‘ODE 

A 1 1 

I r’ -  - - _ _ -  5 
:CLASSIFICATION MAP 9’- - - -I LOOK UP. 

BIT ALLOCATION MAP ! 

Fig. 3 .  The functional block diagram of the adaptive discrete cosine trans- 
form (ADCT) algorithm. 

This can be obtained by an iterative operation. The sec- 
ond term in the denominator represents the overhead in- 
formation. The first term in the bracket represents the data 
volume of the class map normalized by the total number 
of pixels, while the second term represents the data vol- 
ume of N bit allocation maps normalized by the total num- 
ber of pixels. For a 1024 by 1024 pixel image frame, the 
overhead information is minimal (one to two percent) 
compared to the total image data. 

Let s1 = s2 = s. The encoding complexity per pixel of 
the ADCT algorithm requires 2s multiplications and ad- 
ditions for the two-dimensional discrete cosine transform 
and ( n l n 2 ) / ( 2 s 2 )  operations for the sorting (linear sort) 
of transform blocks to obtain the class map. Notice that 
the sorting complexity grows as the image size increases 
and the block size decreases. Table I1 shows the number 
of operations per pixel for two-dimensional transform and 
sorting as a function of image size ( L  by L pixels) and 
block size ( s  by s) pixels. The decoding complexity is 
high since it requires a two-dimensional inverse cosine 
transform (no sorting is required). 

From Table 11, for both 512 by 512 and 1024 by 1024 
pixels image, the block size requiring the fewest opera- 
tions per pixel is 16 by 16 pixels. This is also a commonly 
used block size to reduce the inter-pixel correlation. No- 
tice that the sorting complexity is extremely high when 
the block size is as small as 4 by 4 pixels. To reduce the 
sorting complexity, a more efficient sorting algorithm such 
as the quick sort algorithm could be employed. Another 
approach would be to use a simplified procedure to clas- 
sify the image blocks. To reduce the two-dimensional 
transformation complexity, a fast two-dimensional trans- 
formation algorithm could also be employed. 

B. Vector Quantization Algorithm 
Vector quantization (VQ) [lo], [ 1 11, [20], [21] is a data 

compression technique that provides high compression ra- 
tio with good reconstructed image quality. In addition, 
the decoding procedure for the vector quantization re- 
quires only a table look-up, which is very efficient for the 
single-encoder multiple-decoder data system. Its major 
disadvantage is that the encoding complexity is higher 
than most other image data compression techniques. In 
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addition, its edge degradation can be more severe than 
other techniques, such as transform coding, if there are 
large radiometric variations. 

Vector quantization is a generalization of scalar quan- 
tization. In vector quantization, the input data is divided 
into many small blocks (vectors). The transition levels 
(codewords) are vectors of the same dimension as the in- 
put data vectors. Each input data vector is compared with 
each codeword and the codeword of the smallest distor- 
tion is chosen as the quantization vector to represent the 
input data vector. The indices of the codewords corre- 
sponding to the data vectors are transmitted through the 
data channel. The codebook is transmitted with the coded 
data. At the receiving end, the image is reconstructed ac- 
cording to these received indices by lookup using the 
codeword table (codebook). The functional block dia- 
gram of the vector quantization is shown in Fig. 4. The 
data compression is achieved since fewer bits are used to 
represent the codeword indices than the input data. The 
codebook is generated by training a subset of the source 
data. The performance of the codebook depends highly 
on the similarity between the training data and the coded 
data. Ideally, the encoding procedure involves computing 
the distortion between each input data vector and the 
codewords. Although this is a straightforward but com- 
putationally intensive process, the decoding procedure is 
as simple as a table look-up. 

Let the codebook consist of 2"( = M )  codewords, 
known as an n-bit codebook, where each codeword con- 
tains a block of s1 by s2 pixels. The original image size is 
L,  by L, pixels and each pixel contains K bits to represent 
its intensity. Assuming that each scene has its own code- 
book, the compression ratio is 

2 -  fn = Y; DECODE 

The second term of the denominator represents the amount 
of overhead information (codebook). Table I11 shows an 
example of the achievable compression ratios for sI = s2 
= 4 and K = 8.  We can see that the vector quantization 
also has flexibility in the achievable compression ratio. 
However, to switch from one compression ratio to an- 
other requires the regeneration of the codebook, which is 
computationally intensive. 

There are three problems pertaining to the vector quan- 
tizer that need to be resolved: 1 )  large encoding complex- 
ity, 2)  scene dependence, 3) large edge degradation. 

- 

CODE BOOK 

Fig. 4. The functional block diagram of the vector quantization (VQ) al- 
gorithm. min-' d(x , ,  y z )  means to select the i that yields the minimum 
distortion between x, and y,. 
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17.7 1 15.1 ' 12.8 ! 10.7 
00 21.3 18.3 16.0 ' 14.2 i 12.8 

I~ 

1024 1 1  20.1 

The first problem is especially severe for the ideal full- 
searched scheme where the encoding complexity grows 
exponentially as the index length ( n )  of the codebook 
grows only linearly. The encoding complexity of the vec- 
tor quantizer includes training of the codebook and coding 
of the data. Assume that a fraction F of the source image 
data is used and it requires m iterations in the codebook 
training. For the full-searched scheme of an n-bit code- 
book, the training requires m2"F operations per pixel, 
while the coding requires 2" operations per pixel. Hence, 
the total computation requires 

( 12) 
In order to reduce the encoding complexity, the code- 

book can be divided into several levels (typically two lev- 
els are adequate). The input data vector is compared with 
the first level codebook. Based on the selected codeword 
(first level), the input data vector is compared with the 
codewords of the corresponding second level subcode- 
book. The codeword (second level) of the minimum dis- 
tortion is then chosen as the quantization vector to rep- 
resent the input data vector. This technique is known as 
a two-level tree-searched vector quantizer. Fig. 5 illus- 
trates the encoding procedure. 

For the two-level tree-searched scheme of n1 and n2 bit 
codebook, training requires m (2"' + 2"' ) F operations per 
pixel. Normally, I nl - n2 I = 0 or 1. The encoding re- 
quires 2"' + 2"' operations per pixel. Hence, the total 

(mF + 1 )2" operations/pixel (full-searched). 
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Fig. 5. The encoding procedure of the two-level tree-searched vector quantization algorithm. The first-level codebook contains n, codewords and each 
second-level subcodebook contains nz codewords. The complexity is reduced from ( n , n 2 )  operations/pixel of the full-searched scheme into (n, + 
n2 ) operations/pixel of the two-level tree-searched scheme. 

114 

1/16 

TABLE IV 

TREE-SEARCHED (TREE) VECTOR QUANTIZER. M: NUMBER OF CODEWORDS, 
F: PERCENTAGE OF TRAINING DATA. s: TOTAL NUMBER OF 

geous than the fixed codebook scheme. More details will 

To reduce the effects of the third problem (edge deg- 
THE ENCODING COMPLEXITY OF FULL-SEARCHED (FULL) AND TWO-LEVEL be discussed in section V-B. 

E 128 24 256 32 512 48 
S 320 60 640 80 1280 120 
T 192 36 384 48 768 72 
E 128 24 256 32 512 48 
S 176 33 352 44 714 66 
T 48 9 96 12 192 18 
E 128 24 256 32 512 48 - 

computation requires 

(mF + 1 ) (2"' + 2"') operations/pixel 

(2-level tree-searched). (13) 
An example, shown in Table IV for m = 6, shows that 

it is very costly to train the codebook by using all the 
image data. A good choice for F is one-fourth or one- 
sixteenth of the image data. To avoid degradation in the 
reconstructed image quality, the training data needs to be 
selected uniformly over the entire image. Notice that for 
F = 1 /4  or F = 1 / 16, the computations required by the 
codebook training (using a two-level codebook scheme) 
are comparable to or even less than those required by the 
encoding. This implies that the processing cost to have a 
unique codebook for each image frame is reasonable. 

The second problem (scene dependence) is due to the 
wide radiometric variations of SAR image data. A fixed 
codebook shared by all the image frames may not perform 
well. The degradation resulting from radiometric varia- 
tions can be reduced by: 1) a unique codebook for each 
image; 2) uniformly selecting training data; 3) revising 
the algorithm for adaptivity to local image statistics. A 
unique codebook for each image requires the codebook 
generation for each image frame. In addition, the code- 
book must be transmitted with the coded data to the re- 
ceiving end. Since the image quality is critical and the 
real-time data transfer is not a requirement for the browse 
application, this approach appears to be more advanta- 

radation), a large codebook is normally employed. For 
the SAR images of 1024 by 1024 pixels, a codebook of 
more than 256 codewords yields little degradation in the 
reconstructed image quality. Another approach to reduce 
the edge degradation is by classifying the input data into 
several classes according to its edge characteristics 1221. 

V. TEST RESULTS OF ADAPTIVE TRANSFORM CODING 
AND VECTOR QUANTIZATION 

Several 4-look and 8 by 8 averaged Seasat browse im- 
ages were used as test data sets. The browse images were 
obtained from the 4-look images by spatially averaging a 
square block of 64 pixels. Both the signal to distortion 
ratio (SDR) and the visual quality were used to evaluate 
the coding performance. The SDR is defined as the av- 
erage intensity of the reconstructed image data divided by 
the mean square error between the original and recon- 
structed image data. Let Zjk represent the mag$tude of the 
pixel intensity in the original image and let Zjk represent 
the magnitude of the pixel intensity in the reconstructed 
image. 

A. Test Results of Adaptive Transform Coding 
The adaptive transform coding demonstrates the best 

rate distortion performance among the tested algorithms. 
Its achievable compression ratio is much higher than that 
for the predictive coding and ideally any compression ra- 
tio can be achieved assuming the induced distortion still 
yields a useful product. 

The compression results of Seasat '$-look images of the 
Los Angeles urban scene and Beaufort Sea ice scene using 
the ADCT algorithm are shown in Figs. 6 and 7. Each 
figure contains the original image together with the recon- 
structed images at compression ratios of 20 : 1, 40 : 1 ,  and 
80 : 1. The test results show that the reconstructed image 
contains no noticeable artifacts at a compression ratio of 
20 : 1 for both scenes. The blockiness of the reconstructed 
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Fig. 6 Coiiiprcs\ion result \  o f  Seasat 4-look SAR imagery by thc adaptivc 
di\crcte co\inc triinsloriii algorithm. (a) Original image of Los Angeles. 
CA.  1024 X IO24 pixc ls .  ( b )  Compression ratio = 20 :  I .  SDR = 11.56 
LIB. ( c i  Coiiipi-c\\ion rat io = 10.1. SDR = 9.1 1 d B .  (d)  Compression 
r'itio = 8 0 '  I .  SDK = 8.83 d B  

Pip .  7 Coiiiprcarion result\ 01' Seasat 4-looh SAR imagery by the adaptive 
di\crctc cosine tr;insloriii algorithm. (a)  Original image o f  Beaufort Sea. 
A l a r h a .  1074 x 1034 pixels. (b) Comprcs\ion ratio = 20. I .  SDR = 
16.6 LIB. ( c )  Conipi-c\~ion ratio = 40:  I .  SDK = 14.2 dR (d)  Comprc\- 
\ton ratio = 8 0 :  I .  SDK = 12 .7  d B .  

images occurs at a compression ratio of 40:  1 for the ur- 
ban scene and at a compression ratio of 80: 1 for the sea 
ice scene. This is in  part due to a shorter inter-pixel cor- 
relation distance exhibited in the urban scene. The test 

results also show that the low activity regions of the im- 
age are more susceptible to blockiness. 

Several parameters in the adaptive transform coding 
such as block size, quantization, number of classes. and 
normalization factors were varied during the evaluation. 
The results showed that there is about a I-dB gain in 
SDR for a block size increase from 8 by 8 pixels/block 
to 16 by 16 pixels/block. An additional gain of about 0.4 
dB is realized from an increase of 16 by 16 pixels/block 
to 32 by 32 pixels/block. The quantizer of the transform 
coding is used to quantize the transform coefficients. The 
optimal quantizer is the one which matches with the sta- 
tistics of the transform coefficients. The Max quantizers 
[23] corresponding to Laplacian distribution and Gaussian 
distribution 1241 were tested separately. The results 
showed that the Max quantizer of the Laplacian distribu- 
tion performs slightly better than that of the Gaussian dis- 
tribution when the rate is below 1 bit/pixel. When the rate 
is above 1 bit/pixel, the Laplacian model is slightly worse 
than the Gaussian model. The  performance is also a func- 
tion of the number of classes. Subjectively, using a small 
number of classes, such as 1 or 2 classes. results in more 
degradation in dynamic range than a large number of 
classes, such as 4 or 8 classes. However. if there are 
highly varying local statistics, a large number of classes 
tends to make the low activity regions become blocky. 
even at small compression ratios. Different normalization 
factors were also tested without significant gain in the 
SDR. 

In evaluating the Seasat browse image data sets, a key 
result was that in low activity regions, some of the recon- 
structed images became blocky at a compression ratio of 
10; 1. This initially was unexpected since the browse im- 
age has a higher inter-pixel correlation than the 4-look 
image. Two reasons are postulated as to why the recon- 
structed browse image was qualitatively inferior to the 4- 
look image: 1) The  two types of images used in the testing 
are different in spatial resolution and ground coverage and 
2) The 4-look image does not have low activity regions 
due to the variance from the speckle noise. 

T o  compensate for the blockiness, we constrained the 
block adaptivity by revising the original bit assignment of 
the adaptive transform coding algorithm. The bit assign- 
ment is chosen such that a specified percentage of the bits 
(e .g . ,  50 percent) are assigned with no block adaptivity 
and the remainder of the bits are then assigned according 
to the block activity for a given number of classes. In 
other words, a minimum number of bits are assigned to 
all the image blocks such that the low activity regions are 
guaranteed to receive sufficient bits to avoid the early 
blocky effect. 

The  difference between the original algorithm and the 
modified algorithm is illustrated in Fig. 8. Notice that 
there is clearly blocky effect in the smooth ocean areas by 
using the original ADCT algorithm as shown in Fig. 8(a) 
and (c). The blockiness is removed by the new bit assign- 
ment procedure as shown in Fig. 8(b) and (d). This re- 
vised bit assignment procedure offers more flexibility to 
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Fig. 8. Comparison between the original ADCT algorithm and the revised 
ADCT algorithm at compression ratio 10: 1. (a) Compression result of 
Beaufort Sea, Alaska by the original ADCT algorithm, SDR = 18.33 
dB. (b) Compression result of Beaufort Sea, Alaska by the revised ADCT 
algorithm, SDR = 18.11 dB. (c) Compression result of Detroit, MI, by 
the original ADCT algorithm SDR = 18.30 dB. (d) Compression result 
of Detroit, MI by the revised ADCT algorithm, SDR = 18.40. 

adjust for different scene characteristics and is considered 
an improvement when compressing SAR images with a 
large number of looks. It may also improve the quality of 
those data sets that exhibit highly varying local image sta- 
tistics. Additional results are shown in Figs. 9 and 10 of 
Kennewick, Washington, and Detroit, Michigan for 
compression ratio 10: 1 ,  30: 1 ,  and 50: 1. At compression 
ratio of 30 : 1 , the image shown in Fig. lO(c) still exhibits 
a reasonably good reconstructed image quality. However, 
for the image shown in Fig. 9(c), it appears blurry and 
blocky . At a compression ratio of 50 : 1, the degradation 
in image quality is very clear. 

The Hadamard transform [25] was also used in place of 
the discrete cosine transform in the algorithm of Fig. 3 .  
This was done to evaluate the performance of the Hada- 
mard transform, which is less computationally intensive 
since the Hadamard transform does not require multipli- 
cation. The image quality was found to be very close to 
the one resulting from use of the discrete cosine trans- 
form. 

The major defect of the transform coding technique is 
its high encoding and decoding complexity. Unlike most 
of the image coding techniques in which the decoding 
complexity is usually much simpler than the encoding 
complexity, the transform coding has about the same or- 
der of computation in both encoding and decoding since 
its computational complexity is dominated by the two-di- 
mensional transformation. The transform coding would 
appear more promising for a single-encoder single-de- 

(C) ( 4  
Fig. 9.  Compression result of Seasat 8 by 8 spatial average browse im- 

agery by the adaptive discrete cosine transform algorithm. (a) Original 
image of Kennewick, WA, 896 X 896 pixels. (b) Compression ratio = 
30: 1 ,  SDR = 15.62 dB. (c) Compression ratio = 30: 1, SDR = 12.86 
dB. (d) Compression ratio = 50: 1 ,  SDR = 11.80 dB. 

( 4  
Fig. 10. Compression results of Seasat 8 by 8 spatial average browse im- 

agery by the adaptive discrete cosine transform algorithm. (a) Original 
image of Detroit, MI, 896 X 896 pixels. (b) Compression ratio = 10 : 1 ,  
SDR = 18.40 dB. (c) Compression ratio = 30: 1 ,  SDR = 16.00 dB. (d) 
Compression ratio = 50.1, SDR = 15.13 dB. 

coder data system where high compression ratio and good 
image quality are demanded such as for a primary ar- 
chive. It becomes less attractive for the single-encoder 
multiple-decoder type system since it places additional re- 
quirements on the remote computational facilities. 
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B. Test Results of Vector Quantization 
The vector quantizer based on a two-level tree-searched 

codebook structure was implemented on a VAX /785 
computer equipped with a FPS /5205 array processor. 
Codebooks of different number of codewords from 32 to 
512 codewords were tested. For each case, one-fourth of 
the original image data was used as the training data set. 
The result was that about 6 min is required to train the 
codebook (8-bit) and encode an image of 1024 by 1024 
pixels (1  Mbyte). The codebook is considered as the 
overhead information in the calculation of compression 
ratio as described in Section IV-B. As the number of 
codewords increases, the SDR improves only slightly. 
However, there is dramatic improvement in the visual 
quality. The improvement in the reconstructed image 
quality from 32 to 128 codewords is clearly noticeable. 
Improvement beyond 128 codewords is not visually ap- 
parent. 

The test results for the 4-look and browse images using 
an 8-bit codebook are shown in Figs. 11 and 12, respec- 
tively. The two-level 8-bit codebook consists of 16 code- 
words in each level. The reconstructed image quality when 
using 256 codewords or more is considered to be satisfac- 
tory for browse applications. The importance of properly 
selecting the training data set was also demonstrated in 
the experiment by coding the data with a codebook ob- 
tained by training data of very different characteristics as 
shown in Fig. 13. Only the lower right corner of the im- 
age in Fig. 13(a) was used as the training data set and the 
resultant codebook was used to code the entire image. The 
result was that the bright part of the image (Detroit city) 
was totally smeared as shown in Fig. 13(b). This experi- 
ment strongly suggests that: 1) each image frame should 
have its own codebook, 2) the training data must be se- 
lected uniformly from the entire image data, and 3) the 
algorithm should be revised to be adaptive to the local 
statistics. 

The last recommendation can be implemented by stor- 
ing the dc terms of local image blocks and removing these 
dc values from the original image data. The algorithm can 
then proceed by training and encoding the data without dc 
values. The dc values are quantized and transmitted with 
the coded data to the receiving end. An 8-bit representa- 
tion of the dc values is considered adequate to preserve 
the local image statistics. They are added back into the 
image data during the image reconstruction. Since the dc 
values represent additional overhead information, the im- 
age blocks usually assume larger dimension than the 
codeword dimension to minimize the induced overhead 
information. The test results showed that the performance 
of this revised algorithm is much less sensitive to the 
varying local statistics. An example is shown in Fig. 14, 
where the dc values of the 8 by 8 pixel image blocks are 
preserved. 

The transform coding and the vector quantization tech- 
niques have dramatically different types of distortion. The 
main distortion of the transform coding is a blurry type of 
noise spread over the image while the main distortion of 

Fig. 11. Compression result of Seasat 4-look SAR imagery by the two- 
level tree-searched vector quantization algorithm. (a) Original image of 
Los Angeles, CA, 1024 x 1024 pixels. (b) Compression result of (a) by 
8-bit codebook, compression ratio = 15.1 : 1, SDR = 11.67 dB. (c) 
Original image of Beaufort Sea, Alaska, 1024 x 1024 pixels. (d) 
Compression result of (c) by 8-bit codebook, compression ratio = 
15.1 : 1, SDR = 17.21 dB. 

Fig. 12. Compression result of Seasat 8 by 8 spatial average browse im- 
agery by the two-level tree-searched vector quantization algorithm. (a) 
Original image of Kennewick, WA, 896 X 896 pixels. (b) Compression 
result of (a) by 8-bit codebook, compression ratio = 14.8: 1, SDR = 
14.28 dB. (c) Original image of Detroit, MI, 896 X 896 pixels. (d) 
Compression result of (c) by 8-bit codebook, compression ratio = 
14.8: 1, SDR = 16.24 dB. 

the vector quantization is edge degradation. In addition, 
the achievable compression of vector quantization is ba- 
sically not flexible as switching to a different compression 
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quantization technique is recommended as the SAR image 
data compression algorithm for the on-line data archive 
system. Since the performance of the vector quantizer is 
scene dependent, each scene requires a separate codebook 
of 256 codewords or more with each codeword containing 
4 by 4 pixels. The codebook can be trained by one-fourth 
of the image data uniformly selected across the entire 
frame. The algorithm should also be made adaptive to 
large radiometric variations to minimize the scene depen- 
dence effects. We also recommend that the codebook be 
generated and stored as the image is received by the ar- 
chive to reduce the effective pretransfer computation and 
disk storage space. Upon a request, the  odeb book can be 

(a) (b) 

Fig. 13. The effect of mismatch between training data and coded data of 
the vector quantization algorithm. (a) Original image of Detroit, MI, 512 
x 512 pixels. (b) Comuression result of (a) by 7-bit codebook. The 
codebodk was trained by 1 /4  of the entire image data (the lower right 
comer). Compression ratio = 16: 1 ,  SDR = 14.61 dB. 

immediately transferred with the coded data (codeword 
indices). At the remote site, the image will be recon- 
structed based on the codebook (look-up table) received 

(a) (b) 
Fig. 14. Comparison between the vector quantization algonthm with and 

without adaptivity. Detroit, MI, 512 X 512 pixels. (a) Without adaptiv- 
ity, CR = 12.8: 1 ,  SDR = 17.55 dB. The training data were uniformly 
selected over the entire image. 

ratio involves the regeneration of codebook. Neverthe- 
less, the vector quantization performs well for compres- 
sion ratios between 10: 1 and 20: 1, which meets the 
users’ requirements. 

The performance of the vector quantization is more 
scene dependent than the transform coding. In addition, 
the generation of its overhead information (i.e., the code- 
book) is much more computationally intensive than that 
of the transform coding (i.e., the class map and bit allo- 
cation maps). Two features of the vector quantization, the 
scene dependence and the high complexity in updating the 
codebook, make it less promising for applications requir- 
ing transfer of the compressed SAR image data in real- 
time. However, for the on-line data archive application, 
to reduce the scene dependence effect, each scene could 
have a separate codebook since the codebook can be gen- 
erated off-line and used repeatedly thereafter. 

The vector quantization is considered preferable to the 
adaptive transform coding technique as a data compres- 
sion algorithm for on-line data archive applications. The 
primary reason is its extremely simple decoding proce- 
dure and that it achieves a good reconstructed image qual- 
ity between compression ratios of 10 : 1 and 20 : 1. 

VI. CONCLUSIONS 
Based on the algorithm evaluation results and inputs 

from the user survey, the two-level tree-searched vector 

with the indices. 
The benefits of employing image data compression for 

the on-line data archive distribution system are obvious. 
A larger data base can be accommodated and both small 
transfer delay and transfer cost are achieved without large 
sacrifice in resolution that would result from the spatial 
averaging. With a compression ratio of 15 : 1, the archive 
and transfer cost can be reduced by 93 percent. In addi- 
tion, given a maximum access frequency of 10 to 15 im- 
ages/h with a 9.6-Kbps capacity data line, the transfer 
delay can be maintained at an average of only a few min- 
utes per image frame. 

This performance improvement per unit cost cannot be 
realized by other system modifications such as the multi- 
serial-port system, or by spatial averaging the data. The 
cost of the image data compression is in the increased 
computational capability requirement on the archive (en- 
coder) and the remote users (decoder). The implementa- 
tion cost at the user’s site is negligible since the vector 
quantization decoding mainly requires a software routine 
for table look-up. The memory requirement to store the 
codebook is only 4 Kbytes for 256 codewords of 4 by 4 
pixels, which is very small compared to the 1 Mbyte of 
original image data. Since the algorithm structure of the 
tree-searched vector quantization is suited for hardware 
implementation and the encoding can be performed in 
non-real time (i.e., modest performance requirements), it 
would be cost effective to build such an encoder. 

In this paper, we have concentrated on the application 
of image data compression for electronic transfer of 
browse image data files to remote users. Another impor- 
tant application of data compression for SAR is the down- 
link data transmission of raw signal data or image data 
from the on-board SAR processor to the ground station. 
By employing efficient coding, this data volume can also 
be greatly reduced, thus easing the high data rate require- 
ment on the downlink channel. Due to the different en- 
vironmental constraints, the requirements on image data 
compression and hence the selected algorithm may change 
relative to the browse application. 

The compression of raw SAR echo data is an area that 
has yet to be thoroughly explored. For the SAR image 
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data compression, the visual quality and radiometric ac- 
curacy are usually the main concerns. For the SAR raw 
data compression, the compressed data still must be pro- 
cessed to form the image. Due to the existence of the large 
speckle noise and the sensitivity of the phase information 
to correlated image quality, preliminary analysis indicates 
that compression of raw signal data may not produce 
equivalent results as with the image data. This application 
will be the subject of a further study. 
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